Makrodefinicja: shapes(unroundedshapes) | frontshapes(unroundedfrontshapes)
Makrodefinicje pomocnicze: face(unroundedface)
Kształtem jest polecenie LateX'a tworzące rysunek. Wypróbowałem następujące polecenia:
\pik (= \ensuremath{\spadesuit} \kier (= \ensuremath{\heartsuit} … \pgfimage{«nazwa_pliku»}
Dopuszczalne są na pewno pliki w formacie PNG i JPG, niedopuszczalne są formaty GIF i PS.
Plik graficzny musi się znajdować w katalogu z plikiem TEX. Nie trzeba wpisywać rozszerzenia. Jeśli w katalogu bieżącym są pliki Man.png i Man.jpg (lub
Man.lpeg), to polecenie \pgfimage{Man} „wstawi” plik Man.png.
Do rysowania ścian kostki (równoległoboków z kształtami) wykorzystywane są przekształcenia afiniczne. W pakiecie TikZ przekształcenie afiniczne definiuje się tak:
\pgftransformcm{a}{c}{b}{d}{\pgfpoint{e}{f}}
Powyższe przekształcenie zapisane zapisane tradycyjnie wygląda tak: $A(x;\,y)=(ax+by+e;\,cx+dy+f)$, w szczególności $A(1;\,0)=(a;\,c)+(e;\,f),\,\,A(0;\,1)=(b;\,d)+(e'\,f)$.
\pgfpoint wymaga podania jednostek.Przykład:
\pgfpoint{2cm}{1cm}Po zdefiniowaniu przekształcenia afinicznego $A$, polecenia
\draw figura \fill figura
Po definicjach
\pgftransformcm{a}{c}{b}{d}{\pgfpoint{e}{f}} %przekszatłcenie A … \pgftransformcm{g}{h}{i}{j}{\pgfpoint{k}{l}} %przekszatłcenie B
TikZ korzysta ze złożenia $A\cdot B$. Na ogół jest to niepożądane, warto każde polecenie
pgfrtansformcm poprzedzić poleceniem pgftransformreset.
Definicje przekształceń afinicznych są „lokalne” – przekształcenie zdefiniowane w otoczeniu tikzpicture nie jest stosowane w kolejnych otoczeniach
tikzpicture.
Prostopadłościan opisany na kostce wygląda tak:

Wartości domyślne są następujące:
c = 3 leftScale = 1.0 rightScale = 1.0 a = leftScale*c b = rightScale*c α = 20° β = 20°
Do zmiany wartości domyślnych służą polecenia:
\edef\size{nowa_wartość_c}
\computeLeft{nowa_wartość_α}{nowa_wartość_leftScale}
\computeRight{nowa_wartość_β}{nowa_wartość_rightScale}Makrodefinicja shapes korzysta z makrodefinicji face, a makrodefinicja unroundedshapes z makrodefinicji unroundedfave.
Makrodefinicje shapes i unroundeddshapes rysują kostkę skierowaną krawędzią do przodu. Mają pięć argumentów:
{kształt1/kolor1, kształt2/kolor2, kształt3/kolor3}
\shapes{0}{0}{{\pik/red!20!white, \karo/blue!20!white, \kier/green!20!white}}{2}{3}
\unroundedshapes{0}{0}{{\kier/yellow, \kier/green!20!white, \pik/yellow}}{1}{1}
Prostopadłościan opisany na kostce wygląda tak:

Wartości domyślne są następujące:
a = 3 frontScale = 0.75 b = frontScale*a β = 36°
Do zmiany wartości domyślnych służą polecenia:
\edef\size{nowa_wartość_a}
\computeFront{nowa_wartość_β}{nowa_wartość_frontScale}Makrodefinicja frontshapes korzysta z makrodefinicji face, a makrodefinicja unroundedfrontshapes z makrodefinicji unroundedface.
Makrodefinicje frontshapes i unroundedfrontshapes rysują kostkę skierowaną ścianą do przodu. Mają pięć argumentów:
{kształt1/kolor1, kształt2/kolor2, kształt3/kolor3}
\frontshapes{3}{0}{{\pik/green!20!white, \trefl/blue!20!white, \karo/green!20!white}}{2}{2}}
\unroundedfrontshapes{0}{0}{{\pik/green!20!white, \trefl/blue!20!white, \pik/green!20!white}}{1.5}{1}
\unroundedfrontshapes{4}{0}{{\pik/white, \trefl/blue!20!white, \pik/white}}{1.5}{1.5}
Makrodefinicja face rysuje zaokrąglony kwadrat jednostkowy z kształtem. Ma pięć argumentów:
Makrodefinicja unroundedface różni się od face tylko tym, że rysuje „niezaokrąglony” kwadrat.
Przykład:
\face{\trefl}{yellow}{1}{1}{1}
\pgftransformreset
\pgftransformcm{1}{0}{0}{1}{\pgfpoint{4cm}{0cm}}
\unroundedface{\pik}{blue!40!white}{1}{2}{1}
\pgftransformreset
\pgftransformcm{1}{0}{0}{1}{\pgfpoint{0cm}{-6cm}}
\face{\pgfimage{Colors_128}}{blue!20!white}{-1}{5}{1}